Research on the Piezoelectric Properties of AlN Thin Films for MEMS Applications

نویسندگان

  • Meng Zhang
  • Jian Yang
  • Chaowei Si
  • Guowei Han
  • Yongmei Zhao
  • Jin Ning
چکیده

In this paper, the piezoelectric coefficient d33 of AlN thin films for MEMS applications was studied by the piezoresponse force microscopy (PFM) measurement and finite element method (FEM) simulation. Both the sample without a top electrode and another with a top electrode were measured by PFM to characterize the piezoelectric property effectively. To obtain the numerical solution, an equivalent model of the PFM measurement system was established based on theoretical analysis. The simulation results for two samples revealed the effective measurement value d33-test should be smaller than the intrinsic value d33 due to the clamping effect of the substrate and non-ideal electric field distribution. Their influences to the measurement results were studied systematically. By comparing the experimental results with the simulation results, an experimental model linking the actual piezoelectric coefficient d33 with the measurement results d33-test was given under this testing configuration. A novel and effective approach was presented to eliminate the influences of substrate clamping and non-ideal electric field distribution and extract the actual value d33 of AlN thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices

In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and  silicon  substrates  using  single  ion  beam  sputtering  technique.  The  physical  and  chemical properties  of  prepared  films  were  investigated  by  different  characterization  technique.  X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...

متن کامل

Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering

Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...

متن کامل

Growth of Highly C-axis Oriented Aln Films on 3c-sic/si Substrate

For the first time, highly c-axis oriented heteroepitaxial AlN thin films have been successfully grown on epitaxial 3C-SiC films on Si (100) substrates. The AlN films deposited by the AC reactive magnetron sputtering at temperatures of approximately 300-450 °C were characterized using the scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and transmissio...

متن کامل

Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler

Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...

متن کامل

Growth and surface characterization of piezoelectric AlN thin films on silicon (100) and (110) substrates

ABSTRACT: This work investigates the fundamental growth of c-axis oriented piezoelectric AlN thin films by RF reactive sputtering on p-type (100) and (110) silicon substrates. Substrates are treated with a 1% HF solution before deposition to remove the native oxide followed by backsputtering using argon ions. X-ray diffraction shows a (0001) oriented columnar texture of AlN grains which is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015